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Abstract-Delaminations weaken a laminated beam, which then fails prematurely under in-plane
compression. An exact buckling analysis is performed for beams with double delaminations. Novel
adoption of two coordinates and choice of slope as the unknown function reduce the buckling
equations to simple solvable geometric equations. Complex buckling behaviors emerge for different
sizes and depths of the delaminations. "Free mode" and "constrained mode" of buckling are
identified. Both global and local buckling occurs, depending upon the slenderness ratios of the
delaminations. In addition, an upper bound and a lower bound of buckling loads are obtained by
assuming totally "constrained" and totally "free" deformation for the delaminated beam. These
bounds are easy to compute and provide useful approximations. (0 1998 Elsevier Science Ltd.

I, INTRODUCTION

Air entrapment or insufficient resin during fabrication of fiber-reinforced laminated com
posites may develop into delaminations during loading. Impact on laminated composite
plates or sandwich plates also may cause delamination. These delaminations and their
further extension reduce the strength of laminated composites under longitudinal
compression, and can be a strength limiting factor. Such a delamination was first modeled
by Chai et at. (1981) as a delaminated beam, wherein local delamination growth and
stability were investigated, Simitses et at. (1985) further developed a one-dimensional model
to examine the effects of delamination position, size and depth. Yin et at. (1986) and
Kardomateas and Schmueser (1988) continued with post-buckling analysis and solved the
ultimate axial load capacity of a beam with single delamination. For some geometry and
fracture toughness combinations the buckling load can serve as a measure of the load
carrying capacity of the delaminated composites. Gillespie and Carlsson (1991) conducted
experiments on the delamination buckling and extension on laminate composites, and
verified earlier analyses. Somers et at. (1991), Frostig et at. (1992), Frostig (1992), and
Frostig and Baruch (1993) extended the analysis to the local buckling of delaminated
sandwich beams, with consideration of other high-order effect. Hwu and Hu (1992) further
developed a one-dimensional model to analyze the global buckling of sandwich beams with
debonding.

Shu and Mai (l993a) considered the bridging between delaminated laminates, which
was found to delay buckling of the composites and thus has a favorable effect on their
strength under longitudinal compression. Shu and Mai (1993b) examined the deformation
at the two ends of the delamination, and identified "rigid connectors" and "soft connec
tors". Cox (1991), and Shu and Mai (1993c) showed that stitching as a form of bridging
enhances the fracture resistance of laminated composite and demonstrated the multi-wave
buckling configuration. Kardomateas (1993) examined the ini tial post-buckling and growth
behavior of internal delaminations in composite plates with perturbation approximation
procedure.

The above works are on one-dimensional beam-plates with single delamination. Two
dimensional plates with single delamination have mostly been numerically investigated.
Yeh and Tan (1994) analyzed the buckling of elliptically delaminated composite plates
with nonlinear finite element method (FEM). They used degenerated shell element and
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considered large deformation. Their solution included both global and mixed modes of
buckling.

In addition to the single delamination described above, multiple delaminations also
may be caused by impact damages or manufacturing defects. However, little attention has
been paid to the multiple delamination problem. Kapania and Wolfe (1989) used a finite
element formulation to study the buckling behavior of an axially loaded beam-plate with
multiple delaminations. They modeled the beam-plate with 6 degree-of-freedom beam
column elements. The possible contact between the multiple delaminated layers of the
beam-plate was not considered. Lim and Parsons (1993) performed a linearized buckling
analysis of a composite beam with double delaminations. They used energy method with
assumed displacement and Lagrangian multipliers to account for boundary and continuity
conditions. The possible contact between different layers of delamination, however, was
not considered. Their analysis was also an approximate solution.

The present work seeks to accurately solve the double delamination buckling as five
interconnected beams without assuming displacement. Classical beam theory is used. The
solution is simplified by using two coordinates as well as the choice of slope as the unknown
function. The analysis shows complicated modes of buckling depending upon the relative
slenderness of the delaminated layers. Depending upon the magnitudes of the interlaminar
fracture toughness, the buckling load, failure strains of the material, the delaminated beam
could eventually fail in a variety of ways. The present work is restricted to the buckling
controlled strength of beams. Postbuckling deformation and delamination extension are
not attempted.

2. FORMULATION

Figure 1 shows the geometry of the delaminated beam under consideration. The beam
has length of L and thickness of H. The two delaminations have equal length of a and
divide the beam into three layers with thickness of H 2 , H 3, H 4 • Consider a one-dimensional
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Fig. I. A beam with double through thickness delaminations buckles under compression:

(a) clamped; (b) simply-supported.
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Fig. 2. Beams 2, 3 and 4 can either buckle in contact with each other, or leave gaps: (a) clamped;
(b) simply-supported.

through delamination and, thus, the unit width is conveniently defined. For a two-dimen
sional problem, the solution is more complicated and numerical solutions would have to
be sought [i,e, Narita and Leissa (1990)], The present work is restricted to one-dimensional
beams to obtain exact solutions, The delamination is located at mid-length, where it has
the strongest effect (Simitses et al., 1985). The beam is divided into virgin beams I and 5,
and the delaminated beams 2, 3 and 4.

Under longitudinal compression (Fig. 2), the thinnest amongst beams 2, 3 and 4 tends
to buckle first and has a higher magnitude of deformation than the thicker ones. However,
the thinnest beam may be constrained by others, and they have to buckle together in a
"constrained mode". This greatly complicates the problem, which has the following three
types of initial buckling:

(I) "Free mode": H 2 > H 3 > H 4 , or H 4 > H 3 > H 2 • Without loss of generality,
H 2 > H 3 > H 4 is chosen. In this case beams 2, 3 and 4 buckle independently of each other.

(2) "Constrained mode"; H 2 > H 4 > H 3 or H 4 > H 2 > H 3 . H 2 > H 4 > H 3 is chosen.
Although the thinnest beam three buckles first, it will impinge on and be stopped by thicker
beam 4 which has not yet buckled. The two later buckle together.

(3) "Partially constrained mode" ; H 3 > H 2 > H 4 or H 3 > H 4 > H 2 • For
H 3 > H 2 > H 4 , the thinnest, beam 4, buckles freely first. Beams 2 and 3 will then foIlow
beam 4 to buckle towards the same side (Yin et al., 1986). Since beam 2 is thinner than
beam 3, and thus has a larger deformation, beam 2 is constrained by beam 3. Beam 2
impinges on and is stopped by beam 3. The two beams later buckle together. The for
mulation of case 3 is similar to case 2 and is, thus, omitted for the sake of brevity. The
above "constrained mode" and "free mode" describe the way the delaminated beam
deforms, and should not be confused with the "constrained mode" and "free mode" in
delamination vibration analyses [i.e. Mujumdar and Suryanarayan (1988)), where the two
terms referred to approximate models. The next two sections, 2.1 and 2,2, examine cases I
and 2, respectively, with both clamp and simple supports.

2.1. "Free mode"

2.1.1. Clamped beams. The choice of two coordinates XI (from left) and X (from the
center) are adopted to simplify the formulation (Fig. 3). W,(x) designates the elastic and
small deflection ofsegment i (i = ] to 4). The bending moment distribution along the beams
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Fig. 3. The beam is modeled by five interconnected beams. Classic sign convention is adopted.

Mi(x) can thus be expressed as - Eli Wi' (x). for a beam segment from one end to an internal
cross-section at x (or Xl), equilibrium yields:

EliW;"(x) + PiWJx) + Qiox+M.o = 0, (i = 1-4), (1)

where E is Young's modulus, Ii = H; /12 is the second moment of the rectangular cross
section, QiO and M io are the shear force and bending moment at one end of the beam under
consideration. Symmetry of the problem leads to zero shear at the left end of beam 1, and
the center (right end) of beam 2, 3 and 4. Thus, QiO vanishes for all beams. Therefore, eqn
(1) can be differentiated to yield:

which has general solutions

W (x) = S sin(kx) +C cos(kx), (2)

where Sand C are constants, k2 = PI(E!). The choice of W(x), instead of W(x) as the
unknown function, simplifies the solution. For beam 1, left end clamp condition W'I
(XI = 0) = 0 reduces the solution in eqn (2) to:

(3)

If eis the slope at delamination front XI = (L-a)/2 (or x = -aI2) (Fig. 3), it follows:

(4)

Similarly, since the slope is - eat X = - al2 and zero at X = 0 for beams 2, 3 and 4 due to
symmetry:

(5)

where k2 = ki = PIEI, k1 = PdEI;, Pi = PHdH. Next, consider the moment equilibrium at
the junction between beam 1, and beams 2, 3 and 4, where the bending moment in beam 1
IS:
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(L-a) (L-d) ( L-a)M I ~ = - EIW{ -2-- = EI8k cot k -2-- .

Similarly, the bending moments in beams 2, 3 and 4 are:

The moment equilibrium about the centerline of beam I at the junction yields:
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(6)

(7)

(8)

where AP2 , ti.P, and ti.P4 are the incremental axial forces in beams 2. 3 and 4 arising from
the axial extension/compression of the respective beams caused by e (Figs 2 and 3).
APi = Pi-(HjH)P. Assuming a cross-section at the junction, XI =(L-a)/2 remains plane
and perpendicular to the centerline of all beams (Fig. 2), 8 would cause an extension of
O(H - H 2)/2 and, thus, a strain of 8(H - H 2)/(2a) in beam 2. Therefore:

H-H2ti.P, = EH,f)~-
- - 2a

Similarly:

and

Substituting AP2 , AP, and AP4 into eqn (8), it follows that:

(9)

The beam buckles when the coefficient of 0 vanishes:

Equation (lO) is nondimensionalized by
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where i = 2, 3, 4, and Pc = 4n2£I/L2
. From the resultant equation, buckling load PIPe can

be solved for different nondimensional sizes and depths of a/Land HjH. After the buckling
load has been solved, eqns (4) and (5) can be integrated to give the buckling configurations.

2.1.2. Simply supported beams. Similarly, a simply-supported beam has the following
slopes and buckling equation:

W;(x) = esin(kix)/ sin (ki~} i = 2,3,4,

(11 )

(12)

Equation (13) is nondimensionalized in a manner similar to eqn (10), except that the
buckling load for simply-supported beam is Pc = n2£I/L2

•

2.2. "Constrained mode"
Without loss of generality, case H 2 > H 4 > H 3 is chosen to illustrate the "constrained

mode". In this mode: (a) the delaminated beams 3 and 4 have identical transverse defor
mation along their entire length; and (b) frictionless sliding between them are allowed. (a)
is justified because between two beams, one constraining another, the contact point will
tend to spread along all their length. (b) is justified by the relative low magnitude of
frictional forces compared with the axial forces in the beams. Here beams 3 and 4 buckle
together as one beam, which has axial force P3 +P4 and second moment of cross-section
134 = 13 +h The resultant buckling equation for the clamped beam is:

where k~4 = (P3+P4)/£(/3 +14), Similarly, the buckling equation for simply-supported
beam is:
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(15)

3. UPPER AND LOWER BOUNDS OF BUCKLING LOADS

The section only proposes to estimate the buckling load with upper and lower bounds.
Delamination extension involving interlaminar fracture is not considered here. The upper
bound is first considered. In general, one of beam 2, 3 and 4 tends to buckle first, and
ultimate strength is reached when all beams buckle later. An upper bound can be obtained
if the three are assumed to buckle simultaneously together. Constraints strengthen the
delaminated beam and increase its buckling load. This simple solution avoids the tedious
consideration of sequence of buckling amongst beams 2, 3 and 4, as discussed in the
previous sections.

Beams 2, 3 and 4 are constrained as one beam 234, similar to beam 34 in Section 2.2.
the formulation is similar to eqns (14) and (15) and is omitted. The resultant buckling
equations for clamped and simply-supported beams are:

(16)

where /234 = (H~ + H~ + H~)/12, k~34 = (P2 + P3 + P4)/E(I2 + 13+/4) = P/E(I2 + 13+ 14),
The lower bound solution assumes that beams 2,3 and 4 buckle freely, which ignores

the interaction/constraint between them and thus reduces their buckling strength. The
buckling equations are the same as eqns (10) and (13). However, in Section 2.1, eqns (10)
and (13) are used with the relevant conditions of H2 > H 3 > H4 . Here, in obtaining lower
bound solutions, the two equations are used without preconditions.

The upper bound and lower bound formulated above are general and can be easily
applied to multiple delaminations. For multiple delaminations, the conventional way to
obtain exact buckling loads as in Section 2 will be very lengthy and the order of complexity
will quickly render an exact solution impossible. The two bounds are, however, very easy
to implement even for multiple delaminations, due to the blanket assumptions of "total
free" or "total constrained". The accuracy of such approximations for a specific problem,
however, needs to be further studied through either experiments or numerical schemes. The
next section will include two illustrative cases.

4. RESULTS AND DISCUSSION

This section presents results obtained using the analytical model described above to
study the buckling behavior of beam-plates with single and double delaminations. The
present analysis is first compared with the published results on single and double delami
nations. This is followed by a wide range of buckling loads and modes for double delami
nations.
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Table I. Normalized buckling loads for a simply-supported beam with a single delamination, H, = OAOH

aiL
Lim and Parsons, (1993)

Present solution energy
Lim and Parsons, (1993)

Abaqus Simitses el a1. (1985)
----- -- .-------

0.20
OAO
0.60
0.80

0.9997
0.9902
0.9198
0.7264

0.9997
0.9902
0.9198
0.7264

0.9997
0.9902
0.9197
0.7264

0.9997
0.9902
0.9198
0.7264

To verify the accuracy of the model employed in this work, both single delamination
and double delaminations were calculated using the present analysis. Table I shows the
results from the present analysis obtained with H2/ H = 0.4 as the single delamination for
simply-supported boundary conditions, as well as those published by Simitses et al. (1985),
and Lim and Parsons (1993) by either FEM Abaqus or their energy method. Table I shows
the nondimensional buckling load P/Pc, where Pc is the Euler buckling load for the
undelaminated beam. Pc = n2E//L2 for simply-supported beam, and Pc = 4n2E//C for
clamp-clamp beam. The present analysis has the same assumptions as that of Simitses et
al. (1985) and, therefore, produces identical results. For single delamination, the contact
between the two delaminated layers does not occur. Therefore, there is excellent agreement
between all results. There is one exception, where the energy method of Lim and Parsons
(1993), and their Abaqus FEM produced an unexpected S-shaped buckling mode shape
for the lowest buckling load. The present analysis, like that of Simitses ct al. (1985), does
not produce the antisymmetric S-shaped buckling mode that is often the second mode. The
energy method and Abaqus FEM introduced approximation, which might give rise to the
S-shaped modes as first mode. Further work involving the numerical methods is needed to
determine the exact cause of this S-shaped buckling mode shape.

To further verify the present analysis, Table 2 shows a comparison between results
from the present analysis and the results generated by Abaqus and the energy method by
Lim and Parsons (1993), for various lengths of double delaminations with
H 2/ H = H,! H = 0.3 and H 4 jH = 0.4. The agreement is excellent at short delamination
length ajL = 0.1, and long delamination lengths ajL = 0.4, 0.6 and 0.8, but there are
considerable discrepancies at medium lengths of a/L = 0.2 and 0.3, where the energy
method and Abaqus FEM analysis of Lim and Parsons (1993) generated lower buckling
loads than the present analysis. For all values of a/L, the buckling mode shapes from the
present analysis are single-hump ones. For the energy method of Lim and Parsons (1993),
the lowest buckling load mode shapes of ajL = 0.2,0.3 and 0.4 are the unexpected double
hump modes, which are usually the second modes. From the present analysis, the particular
geometry of H 2/ H = H,/H = 0.3 and H 4 / H ,= 0.4 does not involve contact between buckled
layers of thickness H 2 and H 1 , since they have equal thickness. Although Lim and Parsons
(1993) did not consider contact, this does not seem to be the reason behind the double
hump S-shaped second mode. Further investigation is needed to understand why the energy
method and FEM method deviates from the present beam analysis, as well as the beam
analysis by Simitses et al. (1985) on single delamination.

Table 2. Normalized buckling loads for a clamped beam with two delaminations, H, = 0.3H. H, = 0.3H,
H4'~ OAH

Delamination length
aiL

0.10
0.20
0.30
OAO
0.60
0.80

Present solution

0.9996
0.9835
0.8019
0.5057
0.2374
0.1374

Lim and Parsons, (19931
energy

1.000
0.8939
0.592
0.5054
0.2374
0.1374

Lim and Parsons. (1993)
Abaqus

0.8940

0.5056
0.2375
0.1375
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Comparison is also made with Kapania and Wolfe (1989), who used FEM program
they developed to calculate the buckling load of double delaminations H2/ H = H,! H = 0.33
for clamp-damp boundary condition in Fig. 9 of their work. The same variation of buckling
load vs delamination length a/Lis obtained in Fig. 6 of the presem work. The buckling
loads from the present analysis arc close to the buckling loads calculated by Kapania and
Wolfe (1989), with the buckling loads sharply decreasing with delamination length a/L
between a! L = 0.2 and 0.5.

In the above, results from the present analysis are verified by comparing them with
either earlier results of single delamination or the energy method and FEM method on
double delaminations. In the following, a wide range of nondimensional buckling loads are
obtained. Since the present analysis tackles the contact between different laminates, various
combinations ofdelamination thicknesses/depths H 2 and H, are investigated. This is because
relative thickness between H 2 and H, strongly influences the contact between laminates, i.e.
thinner laminates tend to buckle out more than lhicker ones. Parameter R = (alL)i(H4!H)
is chosen to represent the relative slenderness of beam 4. For clamped beam (Fig. 4).
R = 1.0 represents the case that beam 4 and the whole beam are geometrically similar.
R = 0.8 or 1.2 represent relatively bulky or slender delamination. For simply-supported
beams (Fig. 5), Rs = (a! L)!(2H4H) is chosen to represent the relative slenderness of the
delaminations. To understand Rand Rs, consider a so-called thin-film delamination where
clamped beam 4 buckles locally. With clamped beam. local and global buckling occurs
simultaneously if R = I. With simply-supported beam, however, this occurs at Rs = I.
Beam 4 is called the surface layer and beam 3 the internal layer.

Figures 4 and 5 show the variation of normalized buckling load with surface layer
thickness H 4 • Figure 4 is clamped beam. while Fig. 5 for simply-supported beam. Truncation
of curves Rs = 1.2, 1.4 in Fig. 5 are due to the physical limitation a < L. For both clamped
and simply-supported beams, buckling load P varies with H4 in three phases. In phase l.
H4 < H" beam 4 buckles independently first in "free mode", and R or Rs determines the
almost constant P. The slight decrease of P is caused by the relatively weakened boundary
constraint at the two ends of beam 4 (Fig. 2), since beam 4 is thickened in relation to the
whole beam. Curves R or Rs = I have the biggest decrease in P/ Pc. In transition phase II,
H4 < H" beam 3 buckles and pushes beam 4 in the "constrained mode" and thus P rapidly
decreases. In phase III, the push by a thinner beam 3 is weaker and P stabilizes. For small
R or Rs (0.6, 0.8, 1.0), P = Pc (PI Pc = I) at aiL = 0 (thin film buckling). For large R or
Rs (1.2, 1.4), P is less than Pc due to local buckling. Take R = 1.2 at (Ii L = 0 in Fig. 4 as
an example:

phase I II phase III

R=O.6:
i
,

H2=H/2

0.9

0.4

()

~ 0.8
a.
-g
a 0.7 r-----_
Ol
c
~ 0.6
()
:::l

.a 0.5 1=---- _

o 0.1 0.2 0.3 0.4
delamination depth H4/H

Fig. 4. The buckling load varies with delHinination depth for clamp bcam.
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phase I II phase III

Rs=1.2

0.9

u
~ 0.8
C-

al.Q 0.7 F----_
g>
~ 0.6
u
:J
.0 0.5 r----__

H2=H/2
0.4 Rs=~.4

o 0.1 0.2 0.3 0.4
delamination depth H4/H

Fig. 5. H4 < 0.25H is "free mode" and H 4 > 0.25H is "constrained mode".

~ = (n 2

EH~ li) l(n2

EH') = (!!~ /~)2 = _1 = _1_ = 0.694,
Pc 3a2 H4 ! 3e H/L R 2 1.22

where n2EH~/3a2 is the local buckling load of beam 4. It is worth noting that PI Pc does not
vary with H 41H monotonically. This is contrary to single delamination, where the cor
responding variation is always monotonic [i.e. Yin et al. (1986)].

Figure 6 compares the present double delaminations analysis with earlier single delami
nation analysis. Single central delamination (H2 = H, = H12) is chosen to compare with
the present double delaminations analysis. The formulation of single delamination has been
done before [e.g. Chai et al. (1981); Simitses et al. (1985); Kapania and Wolfe (1989)].
Their analysis is reproduced here to calculate the buckling loads. Two cases (H2 = H12,
H, = H4 = H14; and H2 = H, = H4 = H13) of double delaminations are chosen for the
present analysis. At short delamination, P is not sensitive to a. P decreases rapidly after the
threshold value aiL of about 0.2. The decrease again slow at long delamination (a > 0.5L).

(a)

0.8
u
0-
il:
al 0.6
.Q
C'lc
~ 0.4
:J
.0

0.2 9-===-~q.0--===-0
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Fig. 7. the buckling configurations of clamped beams: (a) a = O.2L; (b) a = O.5L; (c) a = O.8L;
(d) H, = H, = H/2; (e) H, = H/2, H, = H4 = H/4; (I) H, = H, = H4 = H/3.

The buckling configurations for the circled geometries in Fig. 6 are computed and
shown in Fig. 7. Figure 7(a) compares the three types of delaminations for a = 0.2L, while
Fig. 7(b,c) for a = 0.5L and 0.8L. Figure 7(d-f) compare the same nine configurations
grouped under the types of delaminations. Only half of the configurations are displayed
due to symmetry. Beam 2, 3, 4 are spaced for identification although they may deform
identically. The configurations are scaled to similar magnitudes to facilitate comparison.
For single delamination (H2 = H3 = H/2), beam 2 and 3 buckle identically. For double
delaminations H2 = H/2, H3 = H4 = H/4, beam 3 and 4 buckle identically. Figure 7(b)
shows the biggest difference in configuration amongst Fig. 7(a-e), corresponding to the
large difference in P at a/L = 0.5 in Fig. 6. Thin beams 3 and 4 deform considerably more
than beam 2 in Fig. 7(e), compared with identical deformation of these beams in Fig 7(d,f).
Delamination portions (beams 2, 3 and 4) deform considerably more than the undeformed
beam I.

The influence of H 4 for clamped and simply-supported beams is examined in Figs 8
and 9. The buckling load P increases with H 4 in two phases. In phase I with thin surface
layers, Pincreases rapidly. There is a kink for each of the curves at a location near H4 = H/4,
after which P increases relatively slowly. The reason is that for H4 > H/4, H3 < H/4, thus
beam 4 is thicker than beam 3. Beam 3 buckles first and pushes beam 4 to buckle. The push
weakens beam 4 and slows the increase of buckling load. Relative slenderness R > I for
aiL = 0.4, 0.5, 0.6, 0.8 in Fig. 8, and Rs> I for aiL = 0.6 and 0.8 in Fig. 9. In both cases
local buckling dominates and the kink is located at H4 = H/4. For the remaining curves
where R or Rs < I, global buckling occurs and the kink is shifted. It is also clear that
delamination affects clamped beams more than simply-supported beams.

The upper and lower bounds are computed and compared with the actual buckling
load in Figs 10 and II. The two bounds are calculated according to the analyses in Section
3, while the actual buckling load is computed according to Section 2. For H4 < H/4, thus
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phase I phase II

0.8
u
0..
il:
-g 0.6
.Q
C'l
c
~ 0.4
u
il

0.2

oL......::::;;;fIIIIiifii§.~:::::=-L--L--L~_L.-~

o 0.1 0.2 0.3 0.4
delamination depth H4/H

Fig. 8. Buckling load P increases with the surface delamination depth H4 in two phases.

H2=H/2

phase IIphase I

0.1 0.2 0.3 0.4
delamination depth H4/H

o ......=:...--'-----"----l--'---'---'----l.-~--J
o

0.2

0.8
u
0-.......
0-
-g 0.6
.Q
C'lc
~ 0.4
u
::::I
.0

Fig. 9. Simply-supported heam is similar to clamped beam in Fig. 8.

H 2 > H, > H 4 , there is no contact between layers, therefore, the lower bound equals to the
actual buckling load. At H 4 = Hf2, the internal delamination disappear and the upper
bound converges unto the actual buckling load. For thick surface delamination R = 0.8 in
Fig. 10 and Rs = 0.8 in Fig. 11, the upper bound is close to the actual buckling load. while
for R or Rs = 1 and 1.2, the two diverge. In general, the upper bound provides good
estimates for R or Rs < I, especially for relatively thin delamination (low H4/H). The lower
bound, on the other hand. provides good approximation for shallow surface layer H 4 .

The dominating influence of the slenderness ratio R on buckling load is examined for
clamped beams in Fig. 12. The (H, H 4 ) couples label the crowded five curves by their order.
For higher slenderness ratio R. local buckling dominates and, thus, R determines the
buckling load. At low R. global buckling prevails and the infiuence of the delamination
fades. There are two groups ofcurves H4 > ll, and H, > H 4 , where curves in group H, > H 4

represent "free mode" of buckling, while curves in group H 4 > H, represent "constrained
mode" of buckling. The two groups of curves corroborate the two phases in Figs 8 and 9,
where phase I ("free mode") and phase II ("constrained mode") have different charac
teristics. The buckling of simply-supported beams is similarly infiuenced by slenderness
ratios Rs. It is possible to obtain good approximation of buckling load for high slenderness
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Fig. 10. Upper bound and lower boundary compared with actual buckling load for clamped beam.
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Fig. 11. Upper bound and lower bound for simply-supported beam.

ratio (R > 1.2) from Fig. 12. Since the curves in one of the two groups in Fig. 12 are close
to each other. Buckling load can be assumed to depend on slenderness ratio only within
each group. It is worth noting, however, that the dependence is different for the two groups.

Post-buckling deformation and delamination extension are not analyzed here. Those
analyses are complex and, thus, deserve their own separate treatment [i.e. Shu and Mai
(I 993c)]. Thus, the present analysis is restricted to the class of problem of high fracture
toughness and where the compressive strength of the beam is determined by buckling rather
than delamination extension. The buckling configurations obtained, however, can aid the
analysis of post-buckling as well as delamination extension. Apart from being the solution
of a basic delamination buckling problem, the solution can also serve as a benchmark test
case for other general numerical/approximation schemes for multiple delamination buckling
problem.

5. CONCLUSIONS

An exact solution of the buckling of double delaminated beams is obtained for the
first time. The beam is found to buckle either together in "constrained mode", or inde
pendently in "free mode", or in mixed "partially constrained mode". depending upon the
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Fig, 12, Slenderness ratio R dominates the buckling load for both "constrained" and "free mode".

relative thickness of the delaminated layers of the beam. The sensitivity of buckling load
towards either the depth or the length of the delamination increases quickly after some
threshold values of either the depth or the length. The slenderness ratios defined are found
to dominate the buckling loads of the delaminated beams. However, the dominance for
"constrained mode" is different from that for "free mode". Simple ways to calculate
upper bounds and lower bounds of the buckling loads are proposed, which render useful
approximations especially for multiple de1aminations.
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